
Case 5: i > j and j = 1; 1 � i � n � 1

�i;j = �ej�cn�i+1

�1�
n�2�i + �2�

n�2�i

(�1�n�4 + �2�n�4)
: (A:11)

Case 6: i > j and j = 1; i = n

�i;j = �ej 1

(�1�n�4 + �2�n�4)
(A:12)

Case 7: i > j and 2 � j � n� 1; 1 � i � n� 1

�i;j = �ej�cj�cn�i+1

(�1�
j�3 + �2�

j�3)(�1�
n�2�i + �2�

n�2�i)

(�1�n�4 + �2�n�4)
: (A:13)

Case 8: i > j and 2 � j � n� 1; i = n

�i;j = �ej (�1�
j�3 + �2�

j�3)

(�1�n�4 + �2�n�4)
: (A:14)

For Cases 2 - 8, we can similarly obtain

j�i;jj � Ki

�jj�ij
; 2 � i � 8

where K2

:
= 1:1726;K3

:
= 1:1607;K4

:
= 1:1666;K5

:
= 1:1666;K6

:
= 1:1607;K7

:
= 1:1722 and

K8

:
= 1:1666.

Finally, if we choose K = 1:1726, then

j�i;jj � K

�jj�ij
; 1 � i; j � n: (A:15)

This concludes the proof.

2
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and

v0 = � 1

a1
(�1�

n�4 + �2�
n�4):

where �1 =
(13��1)�1

14
> 0; �2 =

(13��1)�2
14

< 0.

Finally, following (3.24) in Lemma 5, we have the following estimates on the inverse of

Mj.

Denote ej; 1 � j � n as

ej =

8>>><
>>>:

1 if j = 1
13

14
if j = 2

1 if 3 � j � n� 1
14

13
if j = n:

Case 1: i � j and 1 � j � n� 1; i = 1

�i;j = �ei�cn�j+1

(�1�
n�2�j + �2�

n�2�j)

(�1�n�4 + �2�n�4)
(A:7)

So we have

j�i;jj � 14

13

�n�2�j (�1 + �2z
n�2�j)

�n�4(�1 � �2zn�4)

� 14

13

�(�1 + �2=z)

(�1 � �2)

1

�j�1

= K1

1

�jj�ij

where z = �

�
� 1 and K1

:
= 1:1666.

Case 2: i � j and 1 � j � n� 1; 2 � i � n

�i;j = �ei�cn�j+1�ci
(�1�

i�3 + �2�
i�3)(�1�

n�2�j + �2�
n�2�j)

(�1�n�4 + �2�n�4)
: (A:8)

Case 3: i � j and j = n; i = 1

�i;j = �ei 1

(�1�n�4 + �2�n�4)
(A:9)

Case 4: i � j and j = n; 2 � i � n

�i;j = �ei�ci (�1�
i�3 + �2�

i�3)

(�1�n�4 + �2�n�4)
: (A:10)
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Appendix

Proof of (3.25). The proof is a straightforward application of Lemma 5. For Mj in

(3.9), we have (a2; a3; � � � ; an) = (� 1

13
;� 1

14
; � � � ; � 1

14
;� 1

14
); (b1; b2; � � � ; bn) = (1; 1; � � � ; 1) and

(c2; c3; � � � ; cn) = (� 1

14
;� 1

14
; � � � ; � 1

14
;� 1

13
) where n = nj = 2jL. Therefore, the sequence

fumg in (3.22) satis�es the following relations,

u0 = 0; u1 = 1; u2 = 14; u3 =
2534

13
; (A:1)

and for 4 � m � n

um = �cm(�um�2 + 14um�1) (A:2)

where �cm = 13

14
; if m = n, �cm = 1 otherwise.

Recursive relation (A.2) is a �nite di�erence of order 2 whose general solution is of the

following form

um = �cm(c1�
m�3 + c2�

m�3) (A:3)

where � = 7+
p
192=2; � = 7�p192=2 are the two distinct roots of the quadratic equation

x2 � 14x+ 1 = 0;

and constant c1 and c2 are chosen so equation (A.3) is valid for m = 2; 3.

Therefore,

u0 = 0; u1 = 1

um = �cm(�1�
m�3 + �2�

m�3); 2 � m � n (A.4)

where �1 =
�

���
(2534

13
� 14�) > 0; �2 =

�

���
(14� � 2534

13
) > 0.

Similarly, we can show that

vn+1 = 0; vn = 1; (A.5)

vm = �cn�m+1(�1�
n�2�m + �2�

n�2�m); for 1 � m � n� 1 (A.6)
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Finally, we consider the IVB problem of nonlinear hyperbolic partial di�erential equation

8><
>:
ut + (u

2

2
)x = 0; �1 � x � 2

u(0; t) = given

u(x; 0) = f(x)

(6:5)

where

f(x) =

(
7sin(�x) if � 1 � x � 1

0 otherwise

In this case, we take L = 10; J = 6. Second order Runge-Kutta method is used for

the time derivative. With every 10 iterations we change the number and locations of the

collocation points according to the criteria proposed at the end of Section 5. The number

of collocation points involved 
uctuates around 100 in contrast to the full set collocation

count which is 1280 in this case. The cut-o� tolerance � = 10�5. In Figure 14, we plot the

numerical solutions at time t = 0:05; 0:1. The numerical scheme automatically puts more

collocation points near the high gradient (x=0) and the derivative discontinuity (x=1).

7 Conclusion

In this paper, we have constructed a fast Discrete Wavelet Transform (DWT) which enables

us to study collocation methods for nonlinear PDE's. The adaptivity of wavelet approxima-

tion is conveniently implemented through the examination of the wavelet coe�cients. The

preliminary tests on the solution of PDE's indicates such an approach will be important

in large scale computation where the solution develops extremely high gradients in isolated

regions, and uniform mesh is not practical. Such investigations are actually being done for

reacting 
ows, the results will be reported in a separate paper.
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Then, we use the procedure at the end of Section 5 to �lter out those coe�cients, thus

deleting the corresponding collocation points, f̂j;k which are less than � in magnitude. In

Figure 8, we take � = 10�5 and the number of wavelet functions f̂j;k reduced to 289 with the

accuracy of the approximation (bottom curves) within order of �. In Figure 9, we plot the

solution at the remaining interpolation points and the expected clustering of the interpolation

points is seen at locations where the function changes more dramatically. In Figure 10, we

plot the magnitude of the wavelet coe�cients f̂j;k; j � �1 one level above another. High

density of the wavelet coe�cients re
ects the existence of high gradients of the approximated

function. In Figure 11, we take � = 10�4 and the number of wavelet functions f̂j;k reduced

to 206 with the accuracy of the approximation (bottom curves) within order of �.

Linear Hyperbolic PDE's

We consider the IVB problem of linear hyperbolic partial di�erential equation

8><
>:
ut + ux = 0; 0 � x � 1
u(0; t) = 0
u(x; 0) = h2(

x

2�
)

(6:4)

where � = 0:05 and h2(x) is de�ned in (6.3).

We apply the collocation method with adaptive choice of the collocation points L =

20; J = 4. Second order Runge-Kutta method is usd for the time derivative. With every

10 iterations we change the number and locations of the collocation points according to the

criteria proposed at the end of Section 5. The cut-o� tolerance � = 10�5. The number of

collocation points involved 
uctuates around 200 in contrast to the full set collocation count

which is 640 in this case. In Figure 12, we plot the numerical solution (`+') against the exact

solution (`o') at time t = 0:1. In Figure 13, we plot the errors in logarithm scale (notice the

y-scale starts at -2 which corresponds to an error of 10�2). Again, we see the automatically

clustering of the collocation points.

Inviscid Burger Equation
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We take the function in (6.1) and de�ne its wavelet interpolation expansion (3.10) for

L = 10; J = 2; 3; � � � ; 9, the total number of terms (or collocation points) N = 2J+1L � 1

are between 79 and 10240. In Figure 5 we plot the CPU time for the performance of DWT

back and forth in both directions (`o' in the Figure) and the computations of derivatives on

all collocation points (`+' in the Figure). Also drawn in the Figure is a straight line which

indicates a almost linear growth of the CPU timing up to 10k points.

Adaptive Approximation of Wavelet Interpolation Expansion

We consider function

f(x) =

8>>>>>>>><
>>>>>>>>:

h1(x+ 1; 0:3) if � 1 � x � �0:7
0 if � 0:7 � x � �0:5� �

h1(x+ 0:5; �) if � 0:5� � � x � �0:5 + �

0 if � 0:5 + � � x � 0
sin(5�x)h1(x� 0:25; 0; 25) if 0 � x � 0:5
h2(

x�0:5

2�
) if 0:5 � x � 1

(6:1)

where � = 0:01 and h1(x; a) is an exponential hat function and h2(x) is a step-like function

and they are de�ned as

h1(x) =

(
exp(� 1

a2�x2
) if jxj < a

0 otherwise
(6:2)

and

h2(x) =

8><
>:

0 if x < 0
1

2772

R x
0
t5(1� t)5 dt if 0 � x � 1

1 otherwise
(6:3)

First we construct the full wavelet interpolation expansion (3.10) PJf(x) for J = 6; L =

40, the total number of wavelet functions (or the collocation points N ) N + 4 = (2J+1L�
1) + 4 = 2J+1L+ 3 = 5123 (including four boundary functions in Ib;Jf(x)). In Figure 6, on

the top we plot the f(x) (solid line) and PJf(x) at non-interpolation points, at the bottom

we have the absolute error in logarithm scale. In Figure 7, we plot the components f0 2 V0
and gj(x) 2 Wj; 0 � j � 6 in PJf(x) = Ib;Jf(x) + f0 + g0 + � � � + gJ . We can see that only

higher frequency part is retained in higher wavelet spaces Wj (notice that the scales varies

in di�erent pictures).
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Step 2. Following Theorem 3 and 4, we can ignore ûj;k in uj(x) in (5.2) for ki � k �
li; i = 1; � � � ;m; ki = k0i + ` + 3; li = l0i � `� 3, namely we rede�ne uj(x) as

uj(x) :=
X

�1�k�nj�2;k�2Kj

ûj;k j;k(x)

where Kj =
S
1�i�m[ki; li].

Step 3. The new collocation points and unknowns will be

fx(j)k g; uJ(x(j)k ); k = 1; � � � ; L� 1 if j = �1; k 2 f�1; � � � ; nj � 2gnKj:

Increasing Level of Wavelet Space.

Let � � 0 again be some prescribed tolerance, and if

maxjûnJ;kj > � (5:8)

where subscript n indicating the solution at time t = tn, then we can increase the number

of wavelet spaces Wj in the expansion for the numerical solution uJ(x) in (5.2), say, up to

WJ 0 ; J
0 > J .

Step 1 At t = tn if condition (5.8) is satis�ed, let J 0 > J and de�ne a new solution vector

~unJ 0 := (u(�1);u(0); � � � ;u(J);u(J+1); � � � ;u(J 0))>

where for J + 1 � j � J 0; u(j) = fPJu(x
(j)

k )gnj�2k=�1.

Step 2 Use ~unJ 0 on the right hand side of scheme (5.5) to advance the solution to time

step tn+1 and obtain solution un+1

J 0 . Then, un+1

J 0 (x) = PJ 0u
n+1

J 0 2 V0 �W0 � � � � �WJ 0 will be

the new numerical solution which yields better approximation to the exact solution of (5.1).

6 Numerical Results

CPU Performance of DWT transform

The theoretical estimates of operations for performing the DWT transform in both di-

rection and the computation of derivatives at all collocation points are O(N logN) where N

is the total number of terms in the wavelet expansion (3.10).
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Again,  0(x) and �0(x) at the dydic points k
2j
; 0 � k � 2jL can be precomputed once and

for all.

Assuming that Euler forward is used to discretize the time derivative in (5.3), we obtain

a fully discretized wavelet collocation method.

Fully discretized Wavelet Collocation Method

8>>>><
>>>>:

uJ
n+1 = uJ

n +�t[�fx(unJ) + unJxx + g(unJ)]jx=x(j)
k

;�1 � j � J

unJ(0) = g0(t
n)

unJ(L) = g1(t
n)

u0J (x = x
(j)

k ) = f(x = x
(j)

k )

(5:5)

where 1 � k � L � 1 for j = �1;�1 � k � nj � 2; for j � 0 and tn = n�t is the time

station and �t is the time step.

Adaptive Choice of Collocation Points

In equations (5.2) and (5.4), uJ(x) and f(uJ(x)) are expressed using the full set of

collocation points fx(j)k g. As discussed in the remark after Theorem 3 of Section 3, most

of the wavelet expansion coe�cients ûj;k for large j can be ignored within a given tolerance

�. So we can dynamically adjust the number and locations of the collocation points used in

the wavelet expansions, thus reducing signi�cantly the cost of the scheme while providing

enough resolution in the regions where solution varies much. We can achieve this adaptivity

in the following two ways.

Deleting Collocation Points

Let � � 0 be a prescribed tolerance and j � 0, ` = `(�) = min(
nj

2
;� log �= log �).

Step 1. First we locate the range for the index k,

(k0
1
; l0

1
); � � � ; (k0m; l0m);m = m(j; �) (5:6)

such that

jûj;kj � �; k0i � k � l0i; i = 1; � � � ;m: (5:7)
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Equation (5.3) involves total (2J+1 � 1)L + 2 unknowns in u two of which will be de-

termined by the boundary conditions and the rest are the solutions of the ODE system

subject to their initial conditions. In order to implement the time marching scheme for the

ODE's system (for example Runge-Kutta type time integrator), we have to compute the

derivative term in (5.3) fx(uJ(x
(j)

k )) and uJxx(x
(j)

k ) in an e�cient way. Let us only discuss

the �rst derivative which involves the computation of the nonlinear function f(uJ(x; t)). For

this purpose we �rst �nd a similar wavelet decomposition as (5.2) for f(uJ ). For a general

nonlinear function f(u), this can be done quite straightforward using the DWT transform

in Section 3.

Computation of fx((x
(j)

k ) = fx(uJ (x
(j)

k )

Step 1 Given u = (u(�1);u(0); � � � ;u(J))>, compute f (j) = ff(u(j)k )g; j � �1 and de�ne

f = (f (�1); f (0); � � � ; f (J))>;

Step 2 Compute the wavelet interpolation expansion using DWT transform for f ,

fJ(x; t) = Ib;Jf + f̂�1;�1(t)�b(x) +
L�4X
k=0

f̂�1;k(t)�k(x) + f̂�1;L�3(t)�b(L � x)

+
JX

j=0

[

nj�2X
k=�1

f̂j;k(t) j;k(x)]; (5.4)

Step 3 Di�erentiate (5.4) and evaluate at all collocation points fx(j)k g; j � �1,

fx(uJ)jx=x(j)
k

= (Ib;Jf)
0(x

(j)

k ) + f̂�1;�1(t)�
0

b(x
(j)

k ) +
L�4X
k=0

f̂�1;k(t)�
0

k(x
(j)

k )� f̂�1;L�3(t)�
0

b(L � x
(j)

k )

+
JX
i=0

[
ni�2X
l=�1

f̂i;l(t) 
0

i;l(x
(j)

k )]:

Cost of Computing the Derivatives.

For each single collocation point, it takes 7 + 5(J + 1) = 5J + 12(flops) to compute

f 0J (x
(J)

k ). Therefore, the total cost of computing all derivatives is (5J + 12)N � 5N logN.
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value problem 8>>><
>>>:
ut + fx(u) = uxx + g(u); x 2 [0; L]; t � 0

u(0; t) = g0(t)

u(L; t) = g1(t)

u(x; 0) = f(x)

(5:1)

where only Direchlet boundary conditions are considered, however, the methods presented

here can also be modi�ed to treat Von Neuman type or Robin type boundary conditions.

We use the idea of method of lines where only the spatial derivative is discretized by the

wavelet decomposition. The numerical solution uJ(x; t) will be represented by an unique

decomposition in V0 �W0 � � � � �WJ ; J � 0, namely

uJ(x; t) = Ib;Ju(x; t) + û�1;�1(t)�b(x) +
L�4X
k=0

û�1;k(t)�k(x) + û�1;L�3(t)�b(L� x)

+
JX

j=0

[
nj�2X
k=�1

ûj;k(t) j;k(x)];

= u�1(x) +
JX

j=0

uj(x) (5.2)

where Ib;Ju(x; t) given in (2.33) consists the nonhomogenuity of u(x; t) on both boundaries,

and the coe�cients ûj;k(t) are all functions of t. Using the DWT transform, we can also

identify the numerical solution uJ(x; t) by its point values on all collocation (previously

named interpolation ) points, i.e. fx(j)k g in (3.1) and (3.6), we put all these values in vector

u = u(t), i.e.

u = u(t) = (u(�1);u(0); � � � ;u(J))>

where u(j) = fu(x(j)k ; t)g; 1 � k � L� 1 for j = �1;�1 � k � nj � 2; for j � 0:

To solve for the unknown solution vector u(t), we collocate the PDE (5.1) on all colloca-

tion points, then we have the following semi-discretized wavelet collocation method.

Semi-Discretized Wavelet Collocation Methods

8>>>><
>>>>:

uJ t + fx(uJ ) = uJxx + g(uJ)jx=x(j)
k

;�1 � j � J

uJ (0; t) = g0(t)

uJ(L; t) = g1(t)

uJ (x = x
(j)

k ; 0) = f(x = x
(j)

k )

(5:3)

where 1 � k � L� 1 for j = �1;�1 � k � nj � 2; for j � 0
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= HB�1�u0

= (0;HB�1�; 0)u (4.9)

Finally, combining equations (4.8) and (4.9), we have

u� =

0
BBBB@

D�uJ(0)

D�uJ(1)
...

D�uJ(L
0)

1
CCCCA = D0u (4:10)

where the derivative matrix D0 is de�ned by

D0 = �+ (0;HB�1�; 0): (4:11)

Converting to the x-derivatives, we have

ux =

0
BBBB@

DxuJ (x0)
DxuJ (x1)

...

DxuJ(xL0)

1
CCCCA = 2J+1

0
BBBB@

D�uJ (0)
D�uJ (1)

...

D�uJ(L
0)

1
CCCCA = 2J+1D0u (4:12)

where xi =
i

2J+1 ; 0 � i � L0.

Let D be the upper left L0 � L0 submatrix of D0, 1

2J+1D will be the wavelet derivative

matrix to di�erential operator (4.1) with boundary condition (4.2), namely, D will maps the

function values u(x0); u(x1); � � � ; u(xL0�1) to its derivatives u0(x0); u0(x1); � � � ; u0(xL0�1),0
BBBB@

u0(x0)
u0(x1)

...

u0(xL0�1)

1
CCCCA = 2J+1D

0
BBBB@

u(x0)
u(x1)
...

u(xL0�1)

1
CCCCA : (4:13)

In Figure 15, we plot the eigenvalues of D for L = 8; J = 0; 1; 2; 3 which corresponds to

N = 8; 16; 32; 64. The eigenvalues come in conjugate pairs with two pure real eigenvalues.

The real part of all the eigenvalues are negative and except one eigenvalues, all the rest are

close the imaginary axis.

5 Adaptive Wavelet Collocation Methods for PDE's

In this section we consider a collocation method based on the DWT transform given in

Section 3 for time dependent PDE's. Let u = u(x; t) be the solution of the following initial
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where I is the (L0 � 1)� (L0 � 1) identity matrix.

To obtain approximation to the derivatives of u(�), we di�erentiate equation (4.4) with

respect to � and evalute at �k = k; 0 � k � L0, i.e.

u0J(�k) = (Ib;0u)
0(�k) + û�1�

0

b(�) +
L0�4X
k=0

ûk�
0

k(�k)� ûL0�3�
0

b(L
0 � �k)

= u0
1
(�k) + u0

2
(�k) 0 � k � L0 (4.7)

where u0
1
(�k) denotes the �rst term in the �rst equation and u0

2
(�k) the rest. Recalling the

de�nition of Ib;0u(�) in (2.33) and coe�cients �k in (2.38) with h = 1 and j = J +1; L = L0,

we have

0
BBBB@

u0
1
(0)

u0
1
(1)
...

u0
1
(L0)

1
CCCCA =

0
BBBBBBBBBBB@

2
Pp

k=0
c0ku(k)� 3u(0)

�1

2

Pp
k=0

c0ku(k)
0
...
0

1

2

Pp

k=0
c0ku(L

0 � k)
�2Pp

k=0
c0ku(L

0 � k) + 3u(L0)

1
CCCCCCCCCCCA
=

0
BBBBBBBBBBB@

�1
�2
0
...
0
�3
�4

1
CCCCCCCCCCCA
u =�u (4:8)

with the four L0 + 1 dimension vectors

�1 = (2c0
0
� 3; 2c0

1
; 2c0

2
; 2c0

3
; 0; � � � ; 0) 2 RL0+1

�2 = �1

2
(c0

0
; c0

1
; c0

2
; c0

3
; 0; � � � ; 0) 2 RL0+1

�3 =
1

2
(0; � � � ; 0; c0

3
; c0

2
; c0

1
; c0

0
) 2 RL0+1

�4 = �(0; � � � ; 0; 2c0
3
; 2c0

2
; 2c0

1
; 2c0

0
� 3) 2 RL0+1:

On the other hand, using (3.5) we have

0
BBBB@

u0
2
(0)

u0
2
(1)
...

u0
2
(L0)

1
CCCCA =

0
BBBBBBBBBBBBBB@

0 0 0 0 � � � 0 0
1

4

1

2
0

�1

2
0 1

2

0 �1

2
0
. . .

. . .
. . .

�1

2
0 1

2

�1

2
�1

4

0 0 0 � � � 0 0 0

1
CCCCCCCCCCCCCCA

û

= Hû
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Because of the multiresolution structure of spaces Vj, i.e. Vj � Vj+1 and V0�W0� � � � �
WJ = VJ+1. We can rewrite the wavelet interpolation uJ (x) of (2.39) for function u(x) as a

linear combination of Ib;J+1f(x) and basis in VJ+1, namely

uJ(x) = Ib;J+1u(x) + û�1�b;J+1(x) +
L0�4X
k=0

ûk�J+1;k(x) + ûL0�3�b;J+1(L � x) (4:3)

where L0 = 2J+1L and Ib;J+1u(x) is de�ned in (2.33).

With the transformation � = 2J+1x, equation (4.3) becomes

uJ(�) := uJ(x) = Ib;0u(�) + û�1�b(�) +
L0�4X
k=0

ûk�k(�) + ûL0�3�b(L
0 � �): (4:4)

Using the notations

u0 = (u(1); u(2); � � � ; u(L0 � 1))> 2 RL0�1;

u = (u(0); (u0)>; u(L0))> 2 RL0+1

û = (û�1; û0; � � � ; ûL0�3)> 2 RL0�1;

and equation (3.5), we have

û = B�1(u0 � ub) (4:5)

where vector ub is de�ned by

ub = (Ib;0u(1); 0; � � � ; 0; Ib;0u(L0 � 1))> 2 RL0�1

and

Ib;0u(1) =
1

6
(c0

0
; c0

1
; c0

2
; c0

3
; 0; � � � ; 0)u0 = 
1u

0; 
1 2 RL0�1

Ib;0u(L
0 � 1) =

1

6
(0; � � � ; 0;�c0

3
;�c0

2
;�c0

1
;�c0

0
) = 
2u

0; 
2 2 RL0�1:

Therefore,

û = B�1(I�

2
66666664


1
0
...

0

2

3
77777775
)u0 = B�1�u0 (4:6)
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used successfully in the shcok wave computations with uniform high order spectral methods,

where ENO �nite di�erence methods and spectral methods are combined to resolve the

shocks and the high frequencey components in the solution, respectively [17].

We conclude this section with the following result which shows how to use wavelet coef-

�cient to estimate the data interpolated by Iwj
.

Theorem 4 Let Iwj
f(x) and f(x) as in Theorem 4. And if for � > 0;�1 � k1 < k2 � nj�2

jf̂j;kj � � for k1 � k � k2;

then

jf(x(j)k )j � 3� for k1 + 3 � k � k2 � 3: (3:29)

Proof. The proof follows from the de�nition of Iwj
f(x).

2

4 Derivative Matrix D

The operation of di�erentiation of functions , which are given in terms of the wavelet ex-

pansion of (2.39), can be represented by a �nite dimension matrix D. Such matrix has been

investigated in [16] for wavelet approximation based on Daubechie's compactly supported

wavelets for periodic functions. The properties of matrix D, especially of its eigenvalues,

a�ect very much the e�ciency and stability of the numerical methods for the solution of

PDE's to be discussed in the next section.

We consider the derivative matrix which approximates the �rst di�erential operator

Lu = ux (4:1)

with the boundary condition

u(L) = 0: (4:2)
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� K�
X

jk�ij�`

1

�jk � ij +MK
X

jk�ij>`

1

�jk � ij

� 2K�[1 + (
1

�
) + � � � + (

1

�
)`] + 2MK[(

1

�
)`+1 + � � �+ (

1

�
)nj�`]

= 2K�
1 � ( 1

�
)`+1

1� ( 1
�
)

+ 2MK(
1

�
)`+1

1 � ( 1
�
)nj�2`

1� ( 1
�
)

� 2K�
�

� � 1
+ 2MK�

1

� � 1

= C 0�

where C 0 = 2K

��1
(� +M).

Finally, we have

j~Iwj
f(x) � Iwj

f(x)j = j X
k2[k1+`;k2�`]

f̂j;k j;k(x)j

� X
k2[k1+`;k2�`]

jf̂j;kjj j;k(x)j � C 0�
X

k2[k1+`;k2�`]

j j;k(x)j

Note that in the last summation, only three terms will be nonezero for any �xed x, so

we have

j~Iwj
f(x)� Iwj

f(x)j � 3C 0� = C�

where C = 6K

��1
(�+M). This concludes the proof of the Theorem.

2

Remark. As a consequence of Theorem 3, the coe�cients f̂j;k of the wavelet interpolation

operator Iwj
f(x) can be ignored if x

(j)

k 2 [x
(j)

k1+`
; x

(j)

k2�`
] where the function f(x) is less than

some given error tolerance �. This procedure will only result in an error of O(�). For

� = 10�10; ` = 9; � = 10�8; ` = 7. In the wavelet interpolation expansion (3.10), Iwj
is

used to interpolate the di�erence between a lower level interpolation Pj�1f(x) and f(x),

i.e. Pj�1f(x) � f(x). Thus, the situation mentioned here will occur in larger region of the

solution domain as j becomes larger, avoiding adding unnecessary expansion terms  j;k(x).

This fact will be used in the later section to achieve adaptivity for the solution of PDE's.

The idea of decomposing numerical approximations into di�erent scales has been previously
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Corollary. Let Mj be the interpolation matrix in (3.9), then we have the following

estimates on M�1

J = (�i:j),

j�i;jj � K

�jj�ij
(3:25)

where K = 1:1726 and � = 7 +
p
192

:
= 13:928.

We delay the proof of (3.25) to the Appendix.

Theorem 3 Let f(x) 2 H2

0
(0; L) and M = maxIjf(x)j and Iwj

f(x) be its interpolation in

Wj de�ned in (3.8) and if for � > 0;�1 � k1 < k2 � nj � 2

jf(x(j)k )j � � for k1 � k � k2:

then de�ne

~Iwj
f(x) =

X
�1�k�nj�2;k�2[k1+l;k2�l]

f̂j;k j;k(x); (3:26)

where l = l(�) = min(nj
2
;� log �

log�
): We have

j~Iwj
f(x)� Iwj

f(x)j � C(M)� (3:27)

where C(M) = 6K

��1
(�+M);K = 1:1726 and � = 7 +

p
192

:
= 13:928.

Proof. From (3.9), we have

f̂ (j) =M�1

j f (j)

where f̂ (j) = (f̂j;�1; � � � ; f̂j;nj�2)>; f (j) = (f(x
(j)
�1); � � � ; f(x(j)nj�2

))>, thus

f̂j;k =

njX
i=1

�k;if(x
(j)

i�2); �1 � k � nj � 2:

So we have

jf̂j;kj � K

njX
i=1

1

�jk � ij jf(x
(j)

i�2)j: (3:28)

For any given � > 0, we take ` = min(nj=2;� log �= log�). For k 2 [k1 + `; k2 � `], using

(3.28) we have

jf̂j;kj � K[
X

jk�ij�`

1

�jk � ij jf(x
(j)

i�2)j+
X

jk�ij>`

1

�jk � ij jf(x
(j)

i�2)j]
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for some � > 0, then for any k 2 Z; j 2 Z+ such that 2�jk 2 (x0 � �=2; x0 + �=2),

jf̂j;kj = O(2�(�+1)j); as j !1: (3:21)

Proof. We have , since  and  b de�ned by (2.19) and (2.20) are continuous and their

second derivatives have 2 vanishing moments, by Theorem A,

jf̂jkj = j < f; �jk > j � X
2�jl2(x0��;x0+�)

j�(j)

kl j j < f; jl > j+ X
2�jl�2(x0��;x0+�)

j�(j)

kl j j < f; jl > j

� X
2�jl2(x0��;x0+�)

K�jk�ljO(2�(�+1)j) +
X

jl�kj>2j
�
2

K�jl�kjC = O(2�(�+1)j)

where C in the �rst but last equation is a constant which depends on the second derivative

of f(x).

2

Lemma 4 implies that the wavelet coe�cients f̂jk, j � 0, still re
ect the singularity of the

function to be approximated. In practice, when we solve PDE's using collocation methods,

we often use the values of the functions, not their derivatives. Therefore, in order to use the

wavelet coe�cients to adjust the choice of wavelet basis functions, we have to establish a

relation between the magnitude of the wavelet coe�cients f̂j;k; j � 0 and f(x). Let us �rst

state the following result on the inverse of tridiagonal matrix from [15].

Lemma5 LetA be a n�n tridiagonal matrix with elements a2; a3; � � � ; an on the subdiagonal,
b1; b2; � � � ; bn on the diagonal and c2; c3; � � � ; cn on the superdiagonal, where ai; ci 6= 0. De�ne

the two sequence fumg, fvmg as follows:

u0 = 0; u1 = 1; um = � 1

cm
(am�1um�2 + bm�1um�1) m � 2 (3.22)

vn+1 = 0; vn = 1; vm = � 1

am+1

(bm+1vm+1 + cm+2vm+1) m � n� 1 (3.23)

where a1 and cn+1 are arbitrary nonzero constants. Then A�1 = (�i;j) is given by

�i;j =

( � uivj

a1v0

Q ck
ak

i � j

� ujvi

a1v0

Q ck
ak

i > j
(3:24)
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From Theorem A, we can claim that the absolute value of the wavelet coe�cient jfjkj
depends upon the local regularity of f(x) in the neighborhood of the abscissa 2�jk. More

precisely, if 2�jk 2 (a; b), the decay of jfjkj depends upon the Lipschitz regularity of f(x)

over the interval [a; b], as the resolution 2j increases. This property of the wavelet coe�-

cients allow us to detect the location of the singularity of the function and, then, provide a

general knowledge of the distribution of wavelet basis functions whose coe�cients are larger

in magnitude than a given threshold. The detail can be referred to [11]. In the framework

of L2, the wavelet function  (x) has at least 1 vanishing moment. Hence the property of the

wavelet coe�cients mentioned above is always valid.

Now we return to the wavelet coe�cients ff̂jkg in (3.10). It can be easily checked that

 ̂(!) =
7

3
(2 � cos!)(

sin !

4

!
4

)4e�
3!
2
i:

Hence  ̂(0) = 3

7
, which implies that  has no vanishing moment at all (see Figure 3) . Since

the wavelet decomposition we considered here is in the space H2

0
(I), therefore, the decay

property for the wavelet coe�cients f̂jk ought to be related to the vanishing moments of the

second derivative of  (x) (seee Figure 4), not to those of  (x). We shall illustrate this more

precisely.

Let f �jkg be the dual basis of f jkg in WJ (recalling that the space we consider here is

H2

0
) . It can be proven that for 	�

jk, (3.17) and (3.18) still hold. Then we have

f̂jk =
Z
I
f 00(x)( �jk)

00(x) dx: (3:20)

Notice that spline wavelets  (x) and  b(x) de�ned by (2.19) and (2.20) are continuous

and their second derivatives have 2 vanishing moments. Then applying Theorem A to the

second derivatives of  (x) and  b(x) (namely, by taking g(x) in Theorem A to be  00(x) and

 00b (x) respectively), we can prove the following.

Lemma 4 Let 0 < � < 1 and f 2 H2

0
(I). If the second derivative of the function f is H�older

continuous with exponent �, at x0 2 I, i.e.

jf 00(x)� f 00(x0)j � Cjx� x0j�; x 2 (x0 � �; x0 + �) � I
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a look at the wavelet coe�cient in the �nite wavelet decomposition of space L2(I), i.e. in

the decomposition Vj = V0�W0�W1 � � � �Wj. The orthogonality here is in the sense of L2

norm not of H2

0
(I) norm. For simplicity , we still use the notation �(x) and  (x) to denote

the scaling function and the wavelet function for this decomposition, while keeping in mind

that they have di�erent de�nitions from those of H2

0
(I) . Then, we can write the wavelet

coe�cient fjk in the �nite decomposition as,

fjk =
Z
I
f(x) �jk(x)dx

where f �jkg is the dual wavelet basis of f jkg in Wj. i.e.f �jkg is such a basis of Wj that

Z
 �jk(x) jl(x) dx = �lk

where �lk is the Kronecker symbol.

Using a similar method in [12], we can prove that

 �jk =
njX
l=1

�
(j)

kl  jl (3:17)

where �
(j)

kl satis�es the estimate

j�(j)

kl j � K�jl�kj (3:18)

with 0 < � < 1 and K a constant.

In order to estimate
R
f , we quote the following theorem from Meyer's book [9].

Theorem A Let g(x) be compactly supported, n times continuously di�erentiable and have

n+ 1 vanishing moments:

Z
1

�1

xpg(x)dx = 0; for 0 � p � n:

Let �; 0 < � < n; be a real number that is not an integer and f(x) 2 L2. Then f(x) is

uniformly Lipschitz of order � over a �nite interval [a; b] if and only if for any k 2 Z and

�2 Z such that 2�jk 2 (a; b),

j
Z
f(x)g(2jx� k) dxj = O(2�(�+1)j) as j !1: (3:19)
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So we have

f�1(x
(�1)

k ) + f0(x
(�1)

k ) = f�1(x
(�1)

k ) = IV 0f(x
(�1)

k ) = f(x
(�1)

k ) 1 � k � L � 1

f�1(x
(0)

k ) + f0(x
(0)

k ) = IV 0f(x
(0)

k ) + (f
(0)

k � (IV 0f)
(0)

k ) = f
(0)

k = f(x
(0)

k ): (3.14)

Equation (3.14) implies that function f�1(x) + f0(x) actually interpolates f(x) on both

interpolation points fx(�1)k g for V0 and the interpolation points fx(0)k g for W0.

Step 3

Generally, we de�ne for 1 � j � J

fj(x) = Iwj
(f (j) � (Pj�1f)

(j)) (3.15)

=
nj�2X
k=�1

f̂j;k j;k(x): (3.16)

where (Pj�1f)
(j)

k = Pj�1f(x
(j)

k ); �1 � k � nj � 2:

Again, as in step 2 we can verify that function f�1(x) + f0(x) + � � �+ fj(x) interpolates

function f(x) on all interpolation points fx(�1)k g; � � � fx(j)k g. Especially, for j = J we have

PJf(x) = f�1(x)+f0(x)+ � � �+fJ (x); which will satisfy the required interpolation condition

(3.11).

Number of Operations.

For j = �1, the number of operations to invert (3.9) using Thomas algorithm to obtain

ff̂ (�1)k g is 5L(flops). For 0 � j � J , the cost of computing the coe�cients f̂
(j)

k in fj(x) =

Iwj
(f (j) � (Pj�1f)

(j)) =
P
�1�k�nj�2

f̂j;k j;k(x) consists of three parts: (1) evaluation of

(Pj�1f)
(j) = fPj�1f(x

(j)

k )g�(5j+7)nj(flops); (2) calculating the di�erence f
(j)�(Pj�1f)

(j)

- nj(flops); (3) inverting the matrix Mj in (3.9) - 5nj(flops), totaling (5j + 13)nj(flops).

So the total cost of �nding f̂ = 5L+
PJ

j=0
(5j+13)nj =

PJ
j=0

(5j+13)2jL � 6N logN where

again N = 2J+1L� 1.

Now let us go back to (3.10) to see the meaning of the wavelet coe�cient ff̂j;kg in the

�nite wavelet decomposition of space H2

0
(I) for function f(x). For this purpose, we �rst take

14



Recalling (3.10) and the \orthogonality condition" (3.7) of the interpolation points, we

have

PJf(x
(�1)

k ) = f�1(x
(�1)

k ); 1 � k � L� 1

which needs 7(L� 1) (
ops).

For each 0 � j � J , to compute PJf(x
(j)

k ); �1 � k � nj�2, it needs (5j+12)�nj (
ops).
Thus, it takes 7(L � 1) +

PJ
j=0

(5j + 12)nj = 2J+1L(5J + 7) + 5L � 7 � 7NlogN(flops) to

compute the vector f .

f �! f̂

Recalling that f = (f (�1); f (0); � � � ; f (J))>, we proceed to construction of PJf(x) in the

following steps.

Step 1

De�ne

f�1(x) = IV 0f
(�1) = f̂�1;�1�b(x) +

L�4X
k=0

f̂�1;k�k(x) + f̂�1;L�3�b(L� x);

so f�1(x) interpolates f(x) at the interpolation points x
(�1)

k ;�1 � k � L � 1, namely

f�1(x
(�1)

k ) = f(x
(�1)

k ); (3:12)

Step 2

De�ne

f0(x) = Iw0
(f (0) � (IV 0f)

(0)) =
n0�2X
l=�1

f̂0;l 0;l(x) (3:13)

where (IV 0f)
(0) = fIV 0f(x

(0)

k )gn0�2k=�1

As a result of the \point-wise orthogonality" conditions (3.7) of the interpolation points,

we have  0;l(x
(�1)

k ) = 0;�1 � l � n0 � 2; 1 � k � L� 1, thus

f0(x
(�1)

k ) = 0; 1 � k � L� 1:

13



where

f�1(x) = IV 0f(x) 2 V0; fj(x) =

nj�2X
k=�1

f̂j;k j;k(x) 2 Wj; j � 0;

and

PJf(x
(�1)

k ) = f(x
(�1)

k ); 1 � k � L� 1

PJf(x
(j)

k ) = f(x
(j)

k ); j � 0;�1 � k � nj � 2: (3.11)

Let us denote f = (f (�1); f (0); � � � ; f (J))> the values of f(x) on all interpolation points, i.e.

f (�1) = ff(x(�1)k )gL�1k=1
;

f (j) = ff(x(j)k )gnj�2k=�1; j � 0;

and f̂ = (f̂ (�1); f̂ (0); � � � ; f̂ (J))> the wavelet coe�cients in the expansion (3.10)

f̂ (�1) = ff̂�1;kgL�1k=1
;

f̂ (j) = ff̂j;kgnj�2k=�1; j � 0:

The following algorithm provides a recursive way to compute all the wavelet coe�cients

f̂ , and also the wavelet expansion (3.10) can be expanded as needed to include higher level

wavelet spaces Wj; J + 1 � j � J 0 by adding only terms from the higher wavelet spaces, i.e.

WJ+1; � � � ;WJ 0.

DWT transform

f̂ �! f

This direction of transform is straightforward by evaluating the expansion (3.10) at all

the collocation points fx(j)k g; j � �1 to obtain f . The \Point-wise Orthogonality" (3.7)

of the interpolation points and the compactness of supp j;k(x) can be used to reduce the

number of evaluations.

Number of Operations

Let N be the total number of collocation points and N = (L�1)+PJ
j=0

nj = 2J+1L�1: In
the evaluation of PJf(x

(j)

k ), values of  (x) and �(x) at dyadic points k

2j
; 0 � k � 2jL; j � 0

are needed and they can be computed once for all for future use.

12



This orthogonality condition will be crucial in obtaining a fast Discrete Wavelet Trans-

form (DWT).

The interpolation Iwj
f(x) of a function f(x) 2 H2

0
(I) in Wj; j � 0 can be expressed as a

linear combination of  j;k(x) k = �1; � � � ; nj � 2, namely

Iwj
f(x) =

nj�2X
k=�1

f̂j;k j;k(x) (3:8)

and

Iwj
f(x

(j)

k ) = f(x
(j)

k ); �1 � k � nj � 2:

If we denote Mj as the nj�th order matrix which relates f̂ (j) = (f̂j;�1; � � � ; f̂j;nj�2)> and

f (j) = (f(x
(j)
�1); � � � ; f(x(j)nj�2

))>, then

f (j) =Mj f̂
(j) (3:9)

where

Mj =

0
BBBBBBBBBBB@

1 � 1

14

� 1

13
1 � 1

14

� 1

14
1 � 1

14

. . .
. . .

. . .

� 1

14
1 � 1

14

� 1

14
1 � 1

13

� 1

14
1

1
CCCCCCCCCCCA
:

The solution of the coe�cients f̂j;k;�1 � k � nj�2 again involves solving tridiagonal system
(3.9) which costs (5nj) operations.

Now let us assume that the values of a function f(x) 2 H2

0
(I) are given on all the inter-

polation points fx(j)k g de�ned in (3.1) and (3.6), we intend to �nd the wavelet interpolation

PJf(x) 2 V0 �W0 �W1 � � � �WJ for J � 0, i.e.

PJf(x) = f̂�1;�1�b(x) +
L�4X
k=0

f̂�1;k�k(x) + f̂�1;L�3�b(L � x)

+
JX

j=0

[
nj�2X
k=�1

f̂j;k j;k(x)]

= f�1(x) +
JX

j=0

fj(x) (3.10)

11



The cubic interpolant IV 0f(x) of data ff (�1)k g can be expressed as follows,

IV 0f(x) = c�1�b(x) +
L�4X
k=0

ck�0;k(x) + cL�3�b(L� x) (3:3)

and IV 0f(x) interpolates data f
(�1)

k ; k = 1; � � � ; L� 1, namely

IV 0f(x
(�1)

k ) = f
(�1)

k ; k = 1; � � � ; L� 1: (3:4)

Let B be the transform matrix between f (�1) = (f
(�1)

1 ; � � � ; f (�1)L�1 )
> and the coe�cient

c = (c�1; � � � ; cL�3)>, i.e.
f (�1) = Bc (3:5)

where

B =

0
BBBBBBBBBBB@

7

12

1

6
1

6

2

3

1

6
1

6

2

3

1

6

. . .
. . .

. . .
1

6

2

3

1

6
1

6

2

3

1

6
1

6

7

12

1
CCCCCCCCCCCA
:

In order to obtain the coe�cients ck;�1 � k � L � 3 in (3.3), we have to solve the

triadiagonal system (3.5) which involves (5L) operations.

Interpolation Operator Iwj
f in Wj

Similarly, we can de�ne the interpolation operator Iwj
f(x) in Wj; j � 0 for any function

f(x) in H2

0
(I). For this purpose, we choose the following interpolation points in I,

x
(j)

k =
k + 1:5

2j
; �1 � k � nj � 2 (3:6)

where nj = DimWj = 2jL.

It can be easily checked that the interpolation points fx(�1)k g for V0 in (3.1) and fx(j)k g
for Wj; j � 0 in (3.6) satisfy a \point-wise orthogonality" condition.

Point Orthogonality of fx(j)k g for j > i;�1 � k � nj � 2,

 j;k(x
(j)

k ) = 1

 j;k(x
(i)

l ) = 0; �1 � ` � ni � 2 if i � 0; 1 � ` � L� 1 if i = �1: (3.7)
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c2 = �3

2
; c3 =

1

3
:

then s = 3 in (2.37), and thus, equation (2.35) is satis�ed within an error of O(h3). Corre-

spondingly, the coe�cients �k; 1 � k � 4 for Ib;jf(x) become

�1 =
pX

k=0

c0kf(kh); �2 = f(0) (2.38)

�3 = �
pX

k=0

c0kf(L � kh); �4 = f(L)

where

c0
0
= (

1

2j+1h
c0 � 3

2
); c0k =

ck

2j+1h
; 1 � k � p:

Now we have f(x) � Ib;jf(x) 2 H2

0
(I) and the decomposition (2.30) can be applied for

it. Therefore, we can �nd an approximation fj(x) for any function f(x) 2 H2(I) as close as

possible, provided that j is large enough, in the form of

fj(x) = Ib;jf + f0 + g0 + g1 � � �+ gj (2:39)

where f0(x) 2 V0; gi 2 Wi; 0 � i � j.

3 Discrete Wavelet Transform (DWT)

In this section, we will introduce a fast Discrete Wavelet Transform (DWT) which maps

discrete sample values of a function to its wavelet interpolant expansions. Such expansion

with the wavelet decomposition will enable us to compute an approximation of the derivatives

of the function.

Interpolant Operator IV 0 in V0

Consider any function f(x) 2 H2

0
(I) and denote the interior knots for V0 by

x
(�1)

k = k; k = 1; � � � ; L� 1 (3:1)

and the values of f(x) on fx(�1)k gL�1k=1
by

f
(�1)

k = f(x
(�1)

k ); k = 1; � � � ; L� 1: (3:2)

9



Approximation for function in H2(I)

Consider the following two functions

�1(x) = 2x+ � 3x2
+
+
7

6
x3
+
� 4

3
(x� 1)3

+
(2.31)

�2(x) = (1 � x)3
+
: (2.32)

For any function f(x) 2 H2(I), by the Sobolev embedding theorem we have f(x) 2 C1(I)

and, therefore, we can de�ne the following boundary interpolation Ib;jf(x); j � 0

Ib;jf(x) = �1�1(2
jx) + �2�2(2

jx) + �3�1(2
j(L� x)) + �4�2(2

j(L� x)) (2:33)

such that

Ib;jf(0) = f(0); Ib;jf(L) = f(L) (2.34)

Ib;jf
0(0) = f 0(0); Ib;jf

0(L) = f 0(L): (2.35)

It can be easily veri�ed that, in order to have Ib;jf satisfy conditions (2.34) - (2.35), we

have to take

�1 =
f 0(0)

2j+1
� 3

2
f(0); �2 = f(0) (2.36)

�3 = �f
0(L)

2j+1
� 3

2
f(L); �4 = f(L):

In many situations we do not have the values of derivatives f 0(0); f 0(L). However, they

can be approximated by �nite di�erences using only the values of f(x). To preserve the

correct order of accuracy for a cubic spline approximation, we suggest using the following

approximations

f 0(0) =
1

h

pX
k=0

ckf(kh) +O(hs) (2.37)

f 0(L) = �1

h

pX
k=0

ckf(L � kh) +O(hs):

where h > 0 and p � 3. For p = 3, if we take

c0 = �11

6
; c1 = 3

8



Using equation (2.21) and the identity

�(4)(x) =
3

4

4X
j=0

�
4

j

�
(�1)j�(x� j)

where �(x) is the Dirac-� function, so we have

< �(x� l);  (x� k) >=
3

4

4X
j=0

�
4

j

�
(�1)j (j � (k � l)) = 0:

Equations (2.27) - (2.29) can be shown similarly to be true . So (1) follows from (2.19)

and (2.20) and the fact that dimVj = 2jL�3 and dimWj = 2jL and dimVj+1 = 2j+1L�3 =

(2jL� 3) + 2jL = dimVj + dimWj;

(2) follows from (1);

(3) follows directly from Theorem 1 (ii).

2

As a consequence of Theorem 2, any function f(x) 2 H2

0
(I) can be approximated as

closely as possible by a function fj(x) 2 Vj = V0 �W0 �W1 � � � �Wj for a su�ciently large

j, and fj(x) has an unique orthogonal decomposition

fj(x) = f0 + g0 + g1 + � � �+ gj (2:30)

where f0 2 V0; gi 2 Wi; 0 � i � j.

7



 l
b;j(x) =  b(2

jx);  r
b;j(x) =  b(2

j(L � x)) (2:23)

where nj = 2jL. For the sake of simplicity, we will adopt the following notations

 j;�1(x) =  l
b;j(x);  j;nj�2 =  r

b;j(x): (2:24)

So when k = �1; nj � 2,  j;k(x) will denote the two boundary wavelet functions, not the

usual translation and dilation of  (x).

Finally, for each j � 0, we de�ne

Wj = closH2
0
<  j;k(x); k = �1; � � � ; nj � 2 > : (2:25)

Theorem 2 The Wj; j � 0 de�ned in (2.25) is the orthogonal compliment of Vj in Vj+1

under the inner product (2.3), i.e.

(1) Vj+1 = Vj �Wj for j 2 Z+: Here � stands for Vk?Wj under the inner product (2.3)

and Vj+1 = Vj +Wj. Therefore,

(2) Wj?Wj+1; j 2 Z+;

(3) H2

0
(I) = V0

L
j2Z+ Wj.

Proof. (1) We only have to prove Vj�Wj for j = 0, namely, for 0 � l � L�4, 0 � k � L�3,

< �(x� l);  (x� k) > = 0 (2.26)

< �(x� l);  b(x) > = 0 (2.27)

< �b(x);  (x� k) > = 0 (2.28)

< �b(x);  b(x) > = 0: (2.29)

Integrating by parts twice in (2.26) and using the fact that  (x); �(x) 2 H2

0
(I) , we have

< �(x� l);  (x� k) > =
Z L

0

�00(x� l) 00(x� k) dx

= �00(x� l) 0(x� k)jL
0
�
Z L

0

�(3)(x� l) 0(x� k) dx

= �
Z L

0

�(3)(x� l) 0(x� k) dx

= ��(3)(x� l) (x� k)jL
0
+
Z L

0

�(4)(x� l) (x� k) dx

=
Z L

0

�(4)(x� l) (x� k) dx:

6



the partition � interpolating f(x). From the fact that f(0) = f(L) = f 0(0) = f 0(L) = 0, we

have s(x) in Vj and then

s(x) = c�1�b;j(x) +
L0�4X
k=0

ck�j;k(x) + cL�3�b;j(L� x) (2:17)

such that

s(xi) = f(xi); 0 � i � 2jL (2:18)

where L0 = 2jL; xi =
i

2j
.

Finally, from (2.16) in Lemma 3 with r = 2 we have

jjjs� f jjj = jjs(2)� f (2)jj � �2jjf (4)jj=22j :

Therefore, as j �!1; jjjs� f jjj �! 0. This proves that C1

0
(0; L) � closH2

0
(
S
j2Z+ Vj).

Then, Theorem 1 (ii) follows from the fact that C1

0
(0; L) is dense in H2

0
(0; L).

2

To construct a wavelet decomposition of Sobolev space H2

0
(I) under the inner product

(2.3), we consider the following two wavelet functions  (x);  b(x) (see Figure 2) ,

 (x) = �3

7
�(2x) +

12

7
�(2x� 1)� 3

7
�(2x� 2) 2 V1 (2.19)

 b(x) =
24

13
�b(2x)� 6

13
�(2x) 2 V1: (2.20)

It can be veri�ed that

 (n) =  b(n) = 0; for all n 2 Z: (2:21)

Equation (2.21) will be important in the construction of the fast DWT transform later. And,

equations (2.19) and (2.20) imply that  (x) and  b(x) both belong to V1. As usual, we de�ne

the dilation and translation of these two functions

 j;k(x) =  (2jx� k); j � 0; k = 0; � � � ; nj � 3; (2:22)
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Theorem 1 Let Vj ; j 2 Z+ be the linear span of (2.14), then Vj forms a multiresolution

analysis (MRA) for H2

0
(I) equipped with norm (2.4) in the following sense

(i) V0 � V1 � V2 � � � � ;
(ii) closH2

0
(
S
j2Z+ Vj) = H2

0
(I);

(iii)
T
j2Z+ Vj = V0; and

(iv) for each j, f�j;k(x) = �(2jx� k); �b;j(x) = �b(2
jx); �b;j(L � x)g is an unconditional

basis of Vj .

Proof. The proof for (iii) and (iv) is straightforward and omitted here. The proof for

(i) follows from (2.7) in Lemma 1. In order to prove (ii), we recall a familiar result on

interpolation cubic spline approximation for smooth functions taken from [14] and rewritten

for the proof of our theorem.

2

Lemma 3 Let � be the partition given by xi = ih; 0 � i � n; h = (b�a)

n
and s(x) be the cubic

spline interpolating f(x) 2 C4[a; b] at all points in �,

s(xi) = f(xi); 0 � i � n;

and satisfying the following boundary conditions:

s0(a) = f 0(a); s0(b) = f 0(b): (2:15)

Then s(x) uniquely exists and

jjs(r) � f (r)jjL2 � �rjjf (4)jjL2h4�r; r = 0; 1; 2; 3 (2:16)

where �0 =
5

384
; �1 =

1

24
; �2 =

3

8
; �3 = 1:

Proof of (ii) of Theorem 1 Let h = 1

2j
, a = 0 and b = L. Consider f(x) 2 C1

0
(0; L), Since

C1

0
(0; L) � C4[0; L] \H2

0
(0; L), by Lemma 3, there is an unique cubic spline corresponding
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1)

�(x) = N4(x) =
1

6

4X
j=0

�
4

j

�
(�1)j(x� j)3

+
(2:5)

�b(x) =
3

2
x2
+
� 11

12
x3
+
+
3

2
(x� 1)3

+
� 3

4
(x� 2)3

+
(2:6)

where N4(x) is the 4th order B-spline [13] and for any real number n

xn
+
=

(
xn if x � 0

0 otherwise.

In a pair they satisfy the following two-scale relationship,

Lemma 1

�(x) =
4X

k=0

23(
4

j)�(2x� k)

�b(x) = ��1�b(2x) +
2X

k=0

�k�(2x� k) (2.7)

here ��1 =
3

4
; �0 = �3

8
; �1 =

17

4
; �2 = �13

4
:

We summarize some properties of �(x) and �b(x) in the following lemma.

Lemma 2 Let �(x) and �b(x) be de�ned as in (2.5) and (2.6), then we have

(1) supp(�(x)) = [0; 4]; (2.8)

(2) supp(�b(x)) = [0; 3]; (2.9)

(3) �(x); �b(x) 2 H2

0
(I); (2.10)

(4) �0(1) = ��0(3) = 1

2
; �0(2) = 0; �0b(1) =

1

4
; �0b(2) = �1

2
; (2.11)

(5) �(1) = �(3) =
1

6
; �(2) =

2

3
; �b(1) =

7

12
; �b(2) =

1

6
: (2.12)

For any j; k 2 Z, we de�ne

�j;k(x) = �(2jx� k); �b;j(x) = �b(2
jx): (2:13)

And for each j, let Vj be the closure under norm jjjf jjj in (2.4) of the linear span of

f�j;k(x); 0 � k � 2jL� 4; �b;j(x); �b;j(L � x)g, namely

Vj = spanf�j;k(x); 0 � k � 2jL� 4; �b;j(x); �b;j(L� x)g: (2:14)

3



olution analysis (MRA) and its corresponding wavelet decomposition of the Sobolev space

H2

0
(I) are constructed using �(x); �b(x) and  (x);  b(x). Then, we show how to construct

a wavelet approximation for function in Sobolev space H2(I) which the solutions of PDE's

will belong to. In Section 3, we discuss the fast discrete wavelet transform (DWT) between

functions and their wavelet coe�cients. In Section 4, we discuss the derivative matrixD asso-

ciated with wavelet interpolations. In Section 5, we present the wavelet collocation methods

for nonlinear time evolution PDE's. In Section 6, we give the CPU time performance of the

DWT transforms and the numerical results of the wavelet collocation methods for linear and

nonlinear PDE's, and a conclusion is given in Section 7.

2 Scaling functions �(x); �b(x) and wavelet functions

 (x);  b(x)

Let I denote any �nite interval, say I = [0; L] and L is a positive integer (for the sake of

simplicity, we assume that L > 4), and H2(I) and H2

0
(I) denote the following two Sobolev

spaces with �nite L2 norm for up to the second derivatives, i.e.

H2(I) = ff(x); x 2 Ij jjf (i)jj2 <1; i = 0; 1; 2g (2:1)

H2

0
(I) = ff(x) 2 H2(I)j f(0) = f 0(0) = f(L) = f 0(L) = 0g: (2:2)

It can be easily checked [7] that H2

0
(I) is a Hilbert space with the inner product

< f; g >=
Z
I
f 00(x)g00(x) dx; (2:3)

thus,

jjjf jjj =
q
< f; f > (2:4)

provides a norm for H2

0
(I).

In order to generate a multiresolution for Sobolev space H2

0
(I), we consider two scaling

functions, an interior scaling function �(x) and a boundary scaling function �b(x) (see Figure

2



1 Introduction

Wavelet approximations have attracted much attention as a potential e�cient numerical

technique for the solutions of partial di�erential equations [1] - [6]. Because of their advan-

tageous properties of localizations in both space and frequency domains [8] - [10], wavelets

seem to be a great candidate for adaptive schemes for solutions which vary dramatically

both in space and time and develop singularities. However, in order to take advantage of the

nice properties of wavelet approximations, we have to �nd an e�cient way to deal with the

nonlinearity and general boundary conditions in the PDE's. After all, most of the problems

of 
uid dynamics and electromagnetics, which involve solutions with quite di�erent scales,

are governed by nonlinear PDE's with complicated boundary conditions. Therefore, it is our

objective here to address these issues when designing wavelet approximations and numerical

schemes for nonlinear PDE's.

We will present a new wavelet collocation method designed to solve nonlinear time evo-

lution problems. The key component in this collocation method is a so-called \Discrete

Wavelet Transform" (DWT) which maps a solution between the physical space and the

wavelet coe�cient space. The wavelet decomposition is based on a new cubic spline wavelet

for H2

0
(I) where I is a bounded interval [11]. In order to treat the boundary conditions an ex-

tra boundary scaling function �b(x) and a boundary wavelet  b(x) have been used. A special

\pointwise orthogonality" ( see(3.7)) of the wavelet functions  j;k(x) results in O(NlogN)

operations for the DWT transform where N is the total number of unknowns. Therefore, the

nonlinear term in the PDE can be easily treated in the physical space, and the derivatives of

those nonlinear terms then computed in the wavelet space. As a result, collocation methods

will provide the 
exibility of handling nonlinearity (and, also the implementation of various

boundary conditions) which usually are not shared by Galerkin type wavelet methods and

�nite element methods.

The rest of this paper is divided into the following �ve sections. In section 2, we introduce

the cubic scaling functions �(x); �b(x) and their wavelet functions  (x);  b(x). A multires-
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We have designed a cubic spline wavelet decomposition for the Sobolev spaceH2

0
(I) where

I is a bounded interval. Based on a special \point-wise orthogonality" of the wavelet basis

functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform
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